

Химический анкер Hilti HIT-HY 200 A

Гибридный клеевой анкер / Расчёт в соответствии с СТО 36554501-048-2016*

Химический анкер

Hilti HIT- HY 200-A Упаковка 500 мл (также поставляется в упаковке 330 мл)

Анкерные шпильки:

Преимущества

- Технология SafeSet: сверление и очистка отверстия в один шаг при использовании пустотелого бура
- Подходит для бетона класса В25-В60 без трещин и с трещинами
- Соответствует категории сейсмостойкости С1, С2^{а)} согласно требованиям Европейской технической оценки (ЕТА)
- Высокая коррозионная стойкость^{b)}
- Допускаются небольшие краевые и межосевые расстояния

Втулки с внутренней резьбой: HIS-N HIS-RN

(M8-M30)

Анкерные шпильки:

HIT-Z HIT-Z-F HIT-Z-R (M8-M20)

Втулки с внутренней резьбой HIS-N не прошли оценку на сейсмостойкость.

Условия установки

Прочая информация

Высококоррозионностойкая версия имеется только для HIT-V-HCR. Коррозионностойкие версии – для HIT-V и HIS-N.

Материал основания

(без трещин)

(с трещинами)

Ударное сверление

Алмазное сверление с)

Технология Hilti SafeSet

Изменяемая глубина установки

Небольшие краевые и межосевые расстояния

Нагрузки и воздействия

квазистатическая сейсмостойкости нагрузка

ETA-C1, C2a)

Огнестойкость

Техническое свидетельство Минстрой РФ

Европейская техническая оценка

Высокая коррозионная стойкость^{b)}

Программа для расчета **PROFIS** Engineering

Расчёт по СТО "Анкерные крепления к бетону. Правила проектирования"

- Втулки с внутренней резьбой HIS-N не прошли оценку на категорию сейсмостойкости С2. a)
- Высококоррозионностойкая версия имеется только для HIT-V-HCR. Коррозионностойкие версии для HIT-V и HIS-N.
- Информация по сверлению алмазной коронкой представлена только для шпилек HIT-Z.

Разрешительные документы / сертификаты

Описание	Орган / Лаборатория	№ / Дата выдачи
Техническое свидетельство	Минстрой, РФ	4805-16 / 08.02.2016
Европейская техническая оценка ^{а)}	Немецкий институт строительной техники (DIBt), Берлин	ETA-11/0493 (HY200 A)
СТО 36554501-048-2016* "Анкерные крепления к бетону. Правила проектирования"	АО "НИЦ "Строительство"	Приложение А. Книга 2 / 2018
Европейская техническая оценка ^{b)}	Немецкий институт строительной техники (DIBt), Берлин	ETA-12/0006 (HY200 A)
Европейская техническая оценка ^{b)}	Немецкий институт строительной техники (DIBt), Берлин	ETA-12/0084 (HY200 A)
Протокол испытаний на огнестойкость	Институт строительных материалов, капитального строительства и противопожарной защиты (IBMB), Брауншвейг	3501/676/13 / 03.08.2012

- а) Сопротивление при статической и квазистатической нагрузке указано в соответствии с расчётом по СТО 36554501-048-2016*;
- b) Все данные в этом разделе приведены в соответствии с ETA-11/0493, ETA-12/0006, ETA-12/0084

Сопротивление при статической и квазистатической нагрузке (одиночный анкер)

Все данные в этом разделе приведены с учетом следующих факторов:

- Расчёт одиночного анкера произведён в соответствии с СТО 36554501-048-2016*
- Монтаж анкера выполнен в соответствии с инструкцией по установке
- Анкер установлен в бетоне класса B25, R_{b,n} = 18,5 МПа
- Отсутствует влияние краевого и межосевого расстояния
- Наименьшее сопротивление анкера по стали
- Толщина основания соответствует указанной в таблице
- Соблюдена стандартная глубина установки, указанная в таблице
- Эксплуатация анкера производится в температурном диапазоне I

(минимальная температура материала основания -430 °C, максимальная длительная/кратковременная температура материала основания: +24 °C / 40 °C)

Для отверстий, полученных ударным сверлением, ударным сверлением пустотелым буром Hilti:

Глубина установки ¹⁾

- Johna yoranobka										
Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
HIT-V										
Глубина установки		[MM]	80	90	110	125	170	210	240	270
Толщина основания		[MM]	110	120	140	161	134	266	300	340
HIS-N										
Глубина установки		[MM]	90	110	125	170	205	-	-	-
Толщина основания		[MM]	120	150	170	230	270	-	-	-
HIT-Z(-R)										
Эффективная глубина анкеровки ²⁾	h _{ef} =I _{Helix}	[MM]	50	60	60	96	100	-	ı	-
Эффективная глубина установки ³⁾	h _{ef} =h _{nom,min}	[MM]	70	90	110	145	180	-	ı	-
Толщина основания		[MM]	130	150	170	245	280	-	-	-

- 1) Допустимый диапазон значений глубины анкеровки указан в установочных параметрах
- 2) При комбинированном разрушении по контакту и выкалыванию бетона основания
- 3) При выкалывании бетона основания

Нормативное сопротивление

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
Бетон без трещи	н									
	HIT-V 5.8		18,3	29,0	42,2	70,9	112,5	154,5	188,7	225,2
Растяжение N _{Rk}	HIS-N 8.8	_ [кН]	25,0	46,0	67,0	112,5	116,0	-	-	-
Растяжение INRK	HIT-Z a)	_	24,0	38,0	54,5	88,6	122,6	-	-	-
	HIT-Z-R		24,0	38,0	54,5	88,6	122,6			
	HIT-V 5.8		9,2	14,5	21,1	39,3	61,3	88,3	114,8	140,3
Capus V-	HIS-N 8.8	_ [кН]	13,0	23,0	34,0	63,0	58,0	-	-	-
Сдвиг V _{Rk}	HIT-Z a)	_	12,0	19,0	27,0	48,0	73,0	-	-	-
	HIT-Z-R		14,0	23,0	33,0	57,0	88,0			
Бетон с трещина	ми									
	HIT-V 5.8		15,1	21,2	35,2	50,5	80,1	110,0	134,3	160,3
Deersweens N	HIS-N 8.8	_ [кН]	24,8	40,0	50,5	80,1	106,0	-	-	-
Растяжение N _{Rk}	HIT-Z a)		21,2	30,8	41,7	63,1	87,3	-	-	-
	HIT-Z-R		21,2	30,8	41,7	63,1	87,3			
	HIT-V 5.8		9,2	14,5	21,1	39,3	61,3	88,3	114,8	140,3
C==:/-\/	HIS-N 8.8	_ [кН]	13,0	23,0	34,0	63,0	58,0	-	-	-
Сдвиг V _{Rk}	HIT-Z a)		12,0	19,0	27,0	48,0	73,0	-	-	-
	HIT-Z-R		14,0	23,0	33,0	57,0	88,0			

а) Анкерная шпилька Hilti HIT-Z-F: М16 и М20

Расчетное сопротивление^{а)}

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
Бетон без трещи	Н						20			
	HIT-V 5.8		12,2	19,3	28,1	47,3	75,0	103,0	125,8	150,1
Востажение М-	HIS-N 8.8	_ [кН]	16,7	30,7	44,7	75,0	77,3	-	-	-
Растяжение N _{Rd}	HIT-Z b)		16,0	25,3	36,3	59,1	81,7	-	ı	ı
	HIT-Z-R		16,0	25,3	36,3	59,1	81,7	-	ı	ı
	HIT-V 5.8	_	7,3	11,6	16,9	31,4	49,0	70,6	91,8	112,2
Сдвиг V _{Rd}	HIS-N 8.8	[кН]	10,4	18,4	27,2	50,4	46,4	-	-	-
СДВИІ УКа	HIT-Z b)		9,6	15,2	21,6	38,4	58,4	-	-	-
	HIT-Z-R		11,2	18,4	26,4	45,6	70,4	-	ı	ı
Бетон с трещина	ми									
	HIT-V 5.8	_	10,1	14,1	23,5	33,7	53,4	73,3	89,6	106,9
Растяжение N _{Rd}	HIS-N 8.8	[кН]	16,5	26,7	33,7	53,4	70,7	-	-	-
гастяжение пка	HIT-Z b)		14,1	20,6	27,8	42,1	58,2	-	-	-
	HIT-Z-R		14,1	20,6	27,8	42,1	58,2	-	-	-
	HIT-V 5.8	_	7,3	11,6	16,9	31,4	49,0	70,6	91,8	112,2
Сдвиг V _{Rd}	HIS-N 8.8	[кН]	10,4	18,4	27,2	50,4	46,4	-	ı	ı
ОДВИП УКО	HIT-Z b)		9,6	15,2	21,6	38,4	48,2	-	ı	ı
	HIT-Z-R		11,2	18,4	26,4	45,6	70,4	-	-	-

а) Для группы анкеров должен быть произведён расчёт в соответствии с СТО 36554501-048-2016*
 b) Анкерная шпилька Hilti HIT-Z-F: M16 и M20

Сейсмическая нагрузка (одиночный анкер)

Все данные в этом разделе приведены с учетом следующих факторов:

- Монтаж анкера выполнен в соответствии с инструкцией по установке
- Анкер установлен в бетоне класса B25, R_{b,n} = 18,5 МПа
- Отсутствует влияние краевого и межосевого расстояния
- Наименьшее сопротивление анкера *по стали*
- Толщина основания соответствует указанной в таблице
- Эксплуатация анкера производится в температурном диапазоне I (минимальная температура материала основания -43 °C, максимальная длительная/кратковременная температура материала основания: +24 °C / 40 °C)
- Температурный диапазон установки от -10 °C до +40 °C
- Коэффициент α_{gap} = 1,0 (с использованием сейсмического набора для заполнения зазоров Hilti (seismic filling set)

Для отверстий, полученных ударным сверлением, ударным сверлением пустотелым буром Hilti:

Глубина анкеровки для категории сейсмостойкости С2

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
HIT-V										
Глубина установки	h _{ef}	[MM]	-	-	-	125	170	210	-	-
HIT-Z										
Эффективная глубина анкеровки ¹⁾	h _{ef} =I _{Helix}	[MM]	-	-	60	96	100	-	-	-
Эффективная глубина установки ²⁾	h _{ef}	[MM]	-	-	110	145	180	-	-	-
Толщина основания		[MM]	-	-	170	245	280	-	-	•

¹⁾ При комбинированном разрушении по контакту и выкалыванию бетона основания

Нормативное сопротивление для категории сейсмостойкости С2

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
Востажение М-	HIT-V 8.8, AM 8.8	[кH]	ı	-	Ī	24,5	45,9	55,4	-	-
Растяжение N _{Rk,seis}	HIT-Z a)	[КП]	-	-	29,4	53,4	73,9	-	-	-
Capus V	HIT-V 8.8, AM 8.8	[1]	-	-	-	46,0	77,0	103,0	-	-
Сдвиг V _{Rk,seis}	HIT-Z a)	[кН]	1	-	23,0	41,0	61,0	-	-	-

а) Анкерная шпилька Hilti HIT-Z-F: М16 и М20

Расчетное сопротивление для категории сейсмостойкости С2

	• • • • • • • • • • • • • • • • • • • •									
Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
Востажение N-	HIT-V 8.8, AM 8.8	[LL]	-	-	-	16,3	30,6	36,9	-	-
Растяжение N _{Rd,seis}	HIT-Z a)	[кН]	-	-	19,6	35,6	49,3	-	-	-
Capies V-	HIT-V 8.8, AM 8.8	[LL]	Ī	ı	-	36,8	61,6	82,4	Ī	-
Сдвиг V _{Rd,seis}	HIT-Z a)	[кН]	-	-	18,4	32,8	48,8	-	-	-

а) Анкерная шпилька Hilti HIT-Z-F: М16 и М20

²⁾ При выкалывании бетона основания

Глубина анкеровки для категории сейсмостойкости С1

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
HIT-V										
Глубина установки	h _{ef}	[MM]	-	90	110	125	170	210	240	270
HIT-Z										
Эффективная глубина анкеровки ¹⁾	h _{ef} =I _{Helix}	[MM]	50	60	60	96	100	-	-	-
Эффективная глубина установки ²⁾	h _{ef}	[мм]	70	90	110	145	180	-	-	-
Толщина основания		[MM]	-	-	170	245	280	-	-	-

¹⁾ При комбинированном разрушении по контакту и выкалыванию бетона основания

Нормативное сопротивление для категории сейсмостойкости С1

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
Востажение Мы	HIT-V 8.8, AM 8.8	[vL]	1	14,7	29,0	42,8	67,8	93,1	113,8	135,8
Растяжение N _{Rk,seis}	HIT-Z a); HIT-Z-R	[кН]	17,9	26,1	35,3	53,4	73,9	-	-	-
	HIT-V 8.8, AM 8.8		-	23,0	34,0	63,0	98,0	141,0	184,0	224,0
Сдвиг V _{Rk,seis}	HIT-Z a)	[ĸH]	7,0	17,0	16,0	28,0	45,0	-	-	-
	HIT-Z-R		8,0	19,0	22,0	31,0	48,0	-	-	-

а) Анкерная шпилька Hilti HIT-Z-F: М16 и М20

Расчетное сопротивление для категории сейсмостойкости С1

Диаметр анкера			M8	M10	M12	M16	M20	M24	M27	M30
Растяжение N _{Rd,seis}	HIT-V 8.8, AM 8.8	[кH]	ı	9,8	19,4	28,5	45,2	62,1	75,8	90,5
Растяжение INRd,seis	HIT-Z a); HIT-Z-R	[кпј	11,9	17,4	23,5	35,6	49,3	-	-	-
	HIT-V 8.8, AM 8.8		-	18,4	27,2	50,4	78,4	112,8	147,2	179,2
Сдвиг V _{Rd,seis}	HIT-Z a)	[ĸH]	5,6	13,6	12,8	22,4	36,0	-	-	-
	HIT-Z-R		6,4	15,2	17,6	24,8	38,4	-	-	-

а) Анкерная шпилька Hilti HIT-Z-F: М16 и М20

²⁾ При выкалывании бетона основания

Материалы

Механические свойства для HIT-V

Диаметр анкера		M8	M10	M12	M16	M20	M24	M27	M30
	HIT-V 5.8 (F)	500	500	500	500	500	500	500	500
Предел прочности на	HIT-V 8.8 (F) AM 8.8 (HDG) [H/MM²	800	800	800	800	800	800	800	800
растяжение f _{uk}	HIT-V-R	700	700	700	700	700	700	500	500
	HIT-V-HCR	800	800	800	800	800	700	700	700
	HIT-V 5.8 (F)	400	400	400	400	400	400	400	400
Предел текучести f _{ук}	HIT-V 8.8 (F) AM 8.8 (HDG) [H/мм²	640	640	640	640	640	640	640	640
	HIT-V-R	450	450	450	450	450	450	210	210
	HIT-V-HCR	640	640	640	640	640	400	400	400
Площадь поперечного сечения A _s	HIT-V [MM²]	36,6	58,0	84,3	157	245	353	459	561
Момент сопротивления W	HIT-V [MM³]	31,2	62,3	109	277	541	935	1387	1874

Механические свойства для HIS-N

Диаметр анкера			M8	M10	M12	M16	M20
	HIS-N		490	490	460	460	460
Предел прочности на	Шпилька 8.8	· - [Н/мм²]	800	800	800	800	800
растяжение f _{uk}	HIS-RN	[1 1/10/10/1]	700	700	700	700	700
	Шпилька А4-		700	700	700	700	700
	HIS-N	_	410	410	375	375	375
Предел текучести f _{ук}	Шпилька 8.8	- [H/mm²]	640	640	640	640	640
предел текучести тук	HIS-RN	[1 1/10/10/1]	350	350	350	350	350
	Шпилька А4-		450	450	450	450	450
Площадь поперечного	HIS-(R)N	- [MM²]	51,5	108,0	169,1	256,1	237,6
сечения А _s	Шпилька	[INIINI]	36,6	58	84,3	157	245
Момент	HIS-(R)N	- [MM ³]	145	430	840	1595	1543
сопротивления W	Шпилька	[INIM]	31,2	62,3	109	277	541

Механические свойства для HIT-Z

mexanii leekile ebelietaa Ailii 111 2								
Диаметр анкера			M8	M10	M12	M16	M20	
Предел прочности на	HIT-Z(-F) a)	[L]/s as a21	650	650	650	610	595	
растяжение fuk	HIT-Z-R	- [H/MM²]	650	650	650	610	595	
П	HIT-Z(-F) a)	[L]/baba21	520	520	520	490	480	
Предел текучести f _{yk}	HIT-Z-R	- [H/мм²]	520	520	520	490	480	
Поперечное сечение резьбы A _s	HIT-Z(-F) ^{a)} HIT-Z-R	[MM ²]	36,6	58,0	84,3	157	245	
Момент сопротивления W	HIT-Z(-F) ^{a)} HIT-Z-R	[MM³]	31,9	62,5	109,7	278	542	

а) Анкерная шпилька Hilti HIT-Z-F: М16 и М20

Материалы для HIT-V

Элемент	Материал					
Оцинкованная сталь						
Резьбовая шпилька, HIT-V 5.8 (F)	Класс прочности 5.8; Удлинение при разрыве А5 > 8% Гальваническое цинковое покрытие (≥5 мкм); (F) горячеоцинкованное покрытие (≥45 мкм)					
Резьбовая шпилька, HIT-V 8.8 (F)	Класс прочности 8.8; Удлинение при разрыве А5 > 12% Гальваническое цинковое покрытие (≥5 мкм); (F) горячеоцинкованное покрытие (≥45 мкм)					
Мерная шпилька Hilti, AM 8.8 (HDG)	Класс прочности 8.8; Удлинение при разрыве А5 > 12% Гальваническое цинковое покрытие (≥5 мкм); (HDG) горячеоцинкованное покрытие (≥45 мкм)					
Шайба	Гальваническое цинковое покрытие (≥5 мкм); горячеоцинкованное покрытие (≥45 мкм)					
Гайка	Класс прочности гайки соответствует классу прочности резьбовой шпильки. Гальваническое цинковое покрытие (≥5 мкм), горячеоцинкованное покрытие (≥45 мкм)					
Набор для заполнения зазоров Hilti (F)	Шайба для заполнения: Гальваническое цинковое покрытие (≥5 мкм) / (F) Горячеоцинкованное покрытие (≥45 мкм) Сферическая шайба: Гальваническое цинковое покрытие (≥5 мкм) / (F) Горячеоцинкованное покрытие (≥45 мкм) Контргайка: Гальваническое цинковое покрытие (≥5 мкм) / (F) Горячеоцинкованное покрытие (≥45 мкм)					
Нержавеющая сталь						
Резьбовая шпилька, HIT-V-R	Класс прочности 70 для ≤ M24 и класс прочности 50 для > M24; Удлинение при разрыве А5 > 8% Нержавеющая сталь 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362					
Шайба	Нержавеющая сталь 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
Гайка	Нержавеющая сталь 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
Высококоррозионно	остойкая сталь					
Резьбовая шпилька, HIT-V-HCR	Класс прочности 80 для ≤ M20 и класс прочности 70 для > M20; Удлинение при разрыве A5 > 8% Высококоррозионностойкая сталь 1.4529; 1.4565;					
Шайба	Высококоррозионностойкая сталь 1.4529, 1.4565 EN 10088-1:2014					
Гайка	Высококоррозионностойкая сталь 1.4529, 1.4565 EN 10088-1:2014					

Материалы для HIS-N

Элемен	IT	Материал					
HIS-N	Втулка с внутренней резьбой	Углеродистая сталь 1.0718, оцинкованная (≥5 мкм)					
•	Шпилька 8.8	Сталь класса прочности 8.8, А5 > 8%, оцинкованная (≥5 мкм)					
HIS-RN	Втулка с внутренней резьбой	Нержавеющая сталь 1.4401,1.4571					
I IIO-KIN	Шпилька 70	Сталь класса прочности 70, А5 > 8% пластичного; Нержавеющая сталь 1.4401; 1.4404, 1.4578; 1.4571; 1.4439; 1.4362					

Материалы для HIT-Z

Элемент	Материал
Резьбовая шпилька HIT-Z	Удлинение при разрыве > 8%; Гальваническое цинковое покрытие (≥5 мкм)
Шайба	Гальваническое цинковое покрытие (≥5 мкм)
Гайка	Класс прочности гайки соответствует классу прочности анкерной шпильки. Гальваническое цинковое покрытие (≥5 мкм)
HIT-Z-F	Удлинение при разрыве > 8% Многослойное гальваническое покрытие сплавом цинк-никель согласно DIN 50979:2008-07
Шайба	Многослойное гальваническое покрытие сплавом цинк-никель согласно DIN 50979:2008-07
Гайка	Многослойное гальваническое покрытие сплавом цинк-никель согласно DIN 50979:2008-07
HIT-Z-R	Удлинение при разрыве > 8%; нержавеющая сталь 1.4401, 1.4404 EN 10088-1:2014
Шайба	Нержавеющая сталь A4 согласно EN 10088-1:2014
Гайка	Класс прочности гайки соответствует классу прочности анкерной шпильки. Нержавеющая сталь 1.4401, 1.4404 EN 10088-1:2014

Информация по установке

Температурный диапазон эксплуатации

Химический анкер Hilti HIT-HY 200 A с анкерной шпилькой HIT-V / HIS-(R)N может применяться в температурном диапазоне, указанном ниже. Повышенная температура основания приводит к снижению расчетной прочности сцепления.

Температура в материале основания

Температурный диапазон	Температура основания	Максимальная длительная температура основания	Максимальная кратковременная температура основания		
Температурный диапазон I	от -43 °C до +40 °C	+24 °C	+40 °C		
Температурный диапазон II	от -43 °C до +80 °C	+50 °C	+80 °C		
Температурный диапазон III	от -43 °C до +120 °C	+72 °C	+120 °C		

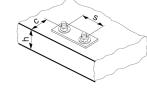
Максимальная кратковременная температура основания

Кратковременная температура материала основания – это максимальная температура основания, которая может наблюдаться в течении всего периода эксплуатации.

Максимальная длительная температура основания

Длительная температура материала основания принимается как среднесуточная температура в течение длительного периода времени.

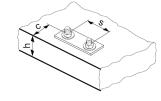
Температура основания	Максимальное время твердения twork	Минимальное время набора прочности t _{cure}
- 10 °C > T _{BM} ≥ - 5 °C	1,5 ч	7 ч
- 5 °C > T _{BM} ≥ 0 °C	50 мин.	4 ч
0 °C > T _{BM} ≥ 5 °C	25 мин.	2 часа
5 °C > T _{BM} ≥ 10 °C	15 мин.	75 мин.
10 °C > T _{BM} ≥ 20 °C	7 мин.	45 мин.
20 °C > T _{BM} ≥ 30 °C	4 мин.	30 мин.
30 °C > T _{BM} ≥ 40 °C	3 мин.	30 мин.

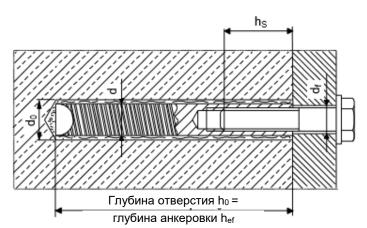

Данные по времени набора прочности указаны только для сухого материала основания. Во влажном материале основания время набора прочности должно быть увеличено в 2 раза.

Установочные параметры для HIT-V

Диаметр анкера	M8	M10	M12	M16	M20	M24	M27	M30		
Номинальный диаметр бура	d	[мм]	10	12	14	18	22	28	30	35
Эффективная глубина	h _{ef,min}	[мм]	60	60	70	80	90	96	108	120
установки и глубина отверстия ^{а)}	h _{ef,max}	[MM]	160	200	240	320	400	480	540	600
Минимальная толщина основания	h _{min}	[мм]	h _{ef} + 3	30 мм ≥1	00 мм			h _{ef} + 2 d ₀)	
Максимальный диаметр отверстия в закрепляемой детали	df	[мм]	9	12	14	18	22	26	30	33
Толщина набора для заполнения зазоров Hilti	h _{fs}	[мм]	-	-	-	11	13	15	-	-
Эффективная толщина закрепляемой детали с использованием набора для заполнения зазоров Hilti	$t_{fix,eff}$	[мм]	t _{fix,eff} - h _{fs}							
Максимальный момент затяжки ^{b)}	T _{max}	[Нм]	10	20	40	80	150	200	270	300
Минимальное межосевое расстояние	Smin	[мм]	40	50	60	75	90	115	120	140
Минимальное краевое расстояние	C _{min}	[мм]	40	45	45	50	55	60	75	80
Критическое межосевое расстояние при раскалывании основания	S _{cr,sp}	[мм]				2 c _o	r,sp	h/h _{nom}		
Критическое краевое			1,0 ·	1,0 · h ef для h / h _{ef} ≥ 2,00						
расстояние при раскалывании	C _{cr,sp}	[MM]	4,6 h _{ef} -	- 1,8 h	для 2,0	0 > h / h	_{ef} > 1,3	1,35		-
основания с)			2,26 h ef для h / hef ≤ 1,3			1,	5·h _{nom} 3	,5·h _{nom} c _{cr,sp}		
Критическое межосевое расстояние при выкалывании бетона основания	Scr,N	[мм]				2 C	cr,sp	'		
Критическое краевое расстояние при выкалывании бетона основания ^{d)}	C _{cr,N}	[мм]				1,5	h _{ef}			

- a) $h_{\text{ef,min}} \le h_{\text{ef}} \le h_{\text{ef,max}} \ (h_{\text{ef}}: \ \text{глубина установки})$
- b) Максимальный рекомендуемый момент затяжки во избежание раскалывания основания во время установки с минимальным краевым и межосевым расстоянием
- c) h: толщина основания (h ≥ h_{мин})
- Критическое краевое расстояние при выкалывании бетона основания зависит от глубины установки h_{ef} и расчетной прочности сцепления. Упрощенная формула, приведенная в этой таблице, учитывает требования безопасности.

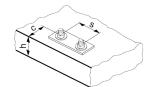

Установочные параметры для HIS-(R)N


Диаметр анкера			M8	M10	M12	M16	M20
Номинальный диаметр бура	d ₀	[мм]	14	18	22	28	32
Диаметр элемента	d	[мм]	12,5	16,5	20,5	25,4	27,6
Эффективная глубина анкеровки	h _{ef}	[мм]	90	110	125	170	205
Минимальная толщина основания	h _{min}	[мм]	120	150	170	230	270
Диаметр отверстия в закрепляемой детали	d _f	[мм]	9	12	14	18	22
Длина зацепления резьбы; мин макс.	hs	[MM]	8-20	10-25	12-30	16-40	20-50
Минимальное межосевое расстояние	Smin	[MM]	60	75	90	115	130
Минимальное краевое расстояние	Cmin	[мм]	40	45	55	65	90
Критическое межосевое расстояние при раскалывании основания	S cr,sp	[мм]			2 Ccr,sp		
			1,0 ⋅ h _{ef}	для	h / h _{ef} ≥ 2,0	h/h _{ef}	
Критическое краевое расстояние при раскалывании основания ^{b)}	C _{cr,sp}	[мм]	4,6 h _{ef} – 1,8	3 h для 1,3	< h / h _{ef} < 2,0	, I	
			2,26 h _{ef}	для	ı h / h _{ef} ≤ 1,3	1,0)·h _{ef} 2,26·h _{ef}
Критическое межосевое расстояние при выкалывании бетона основания	S _{cr,N}	[мм]			2 c _{cr,N}		
Критическое краевое расстояние при выкалывании бетона основания с)	C _{cr} ,N	[мм]			1,5 h _{ef}		
Максимальный момент затяжки а)	T _{max}	[Нм]	10	20	40	80	150

 максимальный рекомендуемый момент затяжки во избежание раскалывания основания во время установки с минимальным краевым и межосевым расстоянием

b) h: толщина основания (h ≥ h_{мин})

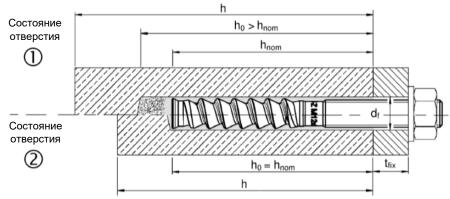
с) Критическое краевое расстояние при выкалывании бетона основания зависит от глубины установки $h_{\rm ef}$ и расчетной прочности сцепления. Упрощенная формула, приведенная в этой таблице, учитывает требования безопасности.

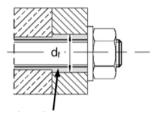


Установочные параметры для HIT-Z, HIT-Z-F и HIT-Z-R

Диаметр анкера			M8	M10	M12	M16	M20
Номинальный диаметр бура	d ₀	[MM]	10	12	14	18	22
Плина описа	мин. І	[MM]	80	95	105	155	215
Длина анкера	макс. І	[MM]	120	160	196	420	450
Диапазон глубины заделки	$h_{\text{nom},\text{min}}$	[MM]	60	60	60	96	100
анкера в основании ^{а)}	h _{nom,max}	[MM]	100	120	144	192	220
Состояние отверстия 1 Минимальная толщина основания	h _{min}	[мм]		h _{nom} + 60 мм		h _{nom} +	100 мм
Состояние отверстия 2 Минимальная толщина основания	h _{min}	[мм]		h _{nom} + 30 мм ≥100 мм			45 мм мм
Максимальная глубина отверстия	h ₀	[MM]		h — 30 мм		h —	2 d ₀
Предварительный монтаж: Диаметр отверстия в закрепляемой детали	d _f	[мм]	9	12	14	18	22
Сквозной монтаж: Диаметр отверстия в закрепляемой детали	df	[мм]	11	14	16	20	24
Максимальная толщина закрепляемой детали	t _{fix}	[MM]	48	87	120	303	326
Максимальна толщина закрепляемого элемента с использованием сейсмического набора для заполнения зазоров	t_{fix}	[мм]	41	79	111	292	314
Момент затяжки при установке ^{b)}	T _{inst}	[Нм]	10	25	40	80	150
Критическое межосевое расстояние при раскалывании основания	S _{cr,sp}	[мм]			2 c _{cr,sp}		
Критическое краевое			1,5 · h _{nom}	для h	/ h _{nom} ≥ 2,35	h/h _{nom} 2,35	
расстояние при раскалывании основания ^{с)}	C _{cr,sp}	[MM]	6,2 h _{nom} - 2,	0 h для 2,35	> h / h _{nom} > 1,	35 1,35	
			3,5 h _{nom}	для h	/ h _{nom} ≤ 1,35	1,5·h _n	om 3,5·h _{nom} c _{cr}
Критическое межосевое расстояние при выкалывании бетона основания	S _{cr,N}	[мм]			2 C _{cr,N}		
Критическое краевое расстояние при выкалывании бетона основания ^{d)}	C _{cr} ,N	[мм]			1,5 h _{nom}		

- a) $H_{\text{nom,min}} \le h_{\text{nom}} \le h_{\text{nom,max}} \ (h_{\text{nom}} : \text{глубина установки})$
- b) Рекомендуемый момент затяжки во избежание раскалывания основания во время установки с минимальным краевым и межосевым расстоянием
- c) h: толщина основания (h ≥ h_{min})
- Критическое краевое расстояние при выкалывании бетона основания зависит от глубины установки h_{ef} и расчетной прочности сцепления. Упрощенная формула, приведенная в этой таблице, учитывает требования безопасности.




Предварительный монтаж:

Установите анкер в основание до установки закрепляемой детали

Сквозной монтаж:

Установите анкер в основание сквозь закрепляемую деталь

Состояние отверстия 1 → отверстие не очищено

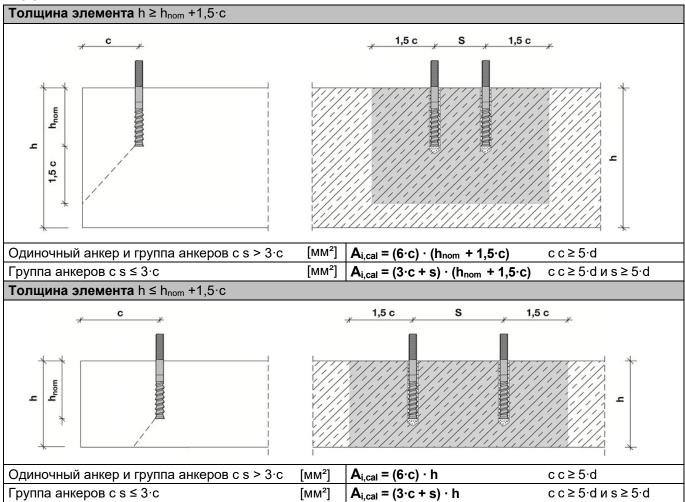
Состояние отверстия 2 → отверстие полностью очищено

Зазор заполнен Hilti HIT-HY 200-A

Размеры анкера для HIT-Z

_			110	2240	1110		1100
Диаметр анкера			M8	M10	M12	M16	M20
Плино онкоро	мин. ℓ	[1414]	80	95	105	155	215
Длина анкера	макс. ℓ	[мм]	120	160	196	M16 155 420 96	450
Длина резьбы	ℓ _{Helix}	[MM]	50	60	60	96	100

Минимальное краевое и межосевое расстояние для HIT-Z


Для расчета минимального межосевого и краевого расстояния анкеров в сочетании с различной глубиной установки и толщиной бетонного элемента используется следующее уравнение: $\mathbf{A}_{i,req} < \mathbf{A}_{i,cal}$

Требуемая площадь призмы выкалывания A_{i, cal} для HIT-Z

Диаметр анкера	M8	M10	M12	M16	M20
Бетон с трещинами [мм	19200	40800	58800	94700	148000
Бетон без трещин [мм	22200	57400	80800	128000	198000

Эффективная площадь A_{i, ef} для HIT-Z

Оптимальное минимальное краевое и межосевое расстояние с требуемой толщиной элемента и глубиной установки

Диаметр анкера			M8	M10	M12	M16	M20			
Бетон с трещинами										
Толщина элемента	h≥	[MM]	140	200	240	300	370			
Глубина установки	h _{nom} ≥	[MM]	80	120	150	200	220			
Минимальное межосевое расстояние	Smin	[MM]	40	50	60	80	100			
Соответствующее краевое расстояние	c≥	[MM]	40	55	65	80	100			
Минимальное краевое расстояние	c _{min} =	[MM]	40	50	60	80	100			
Соответствующее межосевое расстояние	s≥	[MM]	40	60	65	80	100			
Бетон без трещин										
Толщина элемента	h≥	[MM]	140	230	270	340	410			
Глубина установки	h _{nom} ≥	[MM]	80	120	150	200	220			
Минимальное межосевое расстояние	Smin	[мм]	40	50	60	80	100			
Соответствующее краевое расстояние	c≥	[мм]	40	70	80	100	130			
Минимальное краевое расстояние	C _{min}	[мм]	40	50	60	80	100			
Соответствующее межосевое расстояние	s≥	[мм]	40	145	160	160	235			

Оптимальная минимальная толщина элемента и глубина установки с требуемым минимальным краевым и межосевым расстоянием (состояние отверстия 1)

Диаметр анкера			M8	M10	M12	M16	M20
Бетон с трещинами							
Толщина элемента	h≥	[MM]	120	120	120	196	200
Глубина установки	h _{nom} ≥	[MM]	60	60	60	96	100
Минимальное межосевое расстояние	Smin	[MM]	40	50	60	80	100
Соответствующее краевое расстояние	c≥	[MM]	40	100	140	135	215
Минимальное краевое расстояние	C _{min}	[MM]	40	60	90	80	125
Соответствующее межосевое расстояние	s≥	[MM]	40	160	220	235	365
Бетон без трещин							
Толщина элемента	h≥	[MM]	120	120	120	196	200
Глубина установки	h _{nom} ≥	[MM]	60	60	60	96	100
Минимальное межосевое расстояние	Smin	[мм]	40	50	60	80	100
Соответствующее краевое расстояние	c≥	[мм]	50	145	200	190	300
Минимальное краевое расстояние	C _{min}	[мм]	40	80	115	110	165
Соответствующее межосевое расстояние	s≥	[мм]	65	240	330	310	495

Минимальное краевое и межосевое расстояние - Объяснение

Геометрические требования к минимальному краевому и межосевому расстоянию определяются путем испытания условий установки, при которых два анкера с заданным межосевым устанавливаются близко к краю основания без образования трещин в бетоне вследствие затяжки анкеров до требуемого момента.

Граничные условия HIT-Z для краевого и межосевого расстояния представлены в таблице. Если глубина установки и толщина плиты равны или превышают значения в таблице, то могут быть использованы указанные значения краевого и межосевого расстояния.

Программа для расчета PROFIS Engineering создана для решения указанных уравнений с целью определения соответствующего оптимизированного минимального краевого и межосевого расстояния на основании следующих переменных:

Бетон с трещинами или без трещин	Для бетона с трещинами учитывается предположение, что имеется армирование, ограничивающее ширину раскрытия трещины до 0,3 мм,
	что позволяет использовать меньшие значения минимального
	краевого и межосевого расстояния
Диаметр анкера	Для анкеров меньшего диаметра требуется меньший момент затяжки
	при установке, что позволяет использовать меньшие значения
	минимального краевого и межосевого расстояния
Толщина плиты и глубина	Увеличение этих значений позволяет использовать меньшие значения
установки	минимального краевого и межосевого расстояния

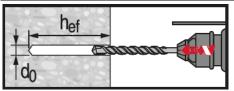
Оборудование для установки

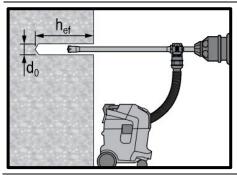
ооорудование	, Harrie J. G. 1 Grand											
Диаметр анкер	oa	M8	M10	M12	M16	M20 M24 M27 N						
	HIT-V		TE 2 –	TE 16		TE 40 - TE 80						
Перфоратор	HIT-Z	Т	E 2 – TE 4	0	TE 40 -	- TE 80	-					
	HIS-N	TE (-A) -	TE 16(-A)	TI	E 40 – TE 8) – TE 80 -						
Другие инструм	1енты	компре	ссор со сж	атым возд	-	ос для очі лый бур	истки, набо	- стки, набор щеток, дозатс				

Параметры оборудования

	Соорудован		Диаметры (бура d₀ [мм]	Очистка и	установка
HIT-V	HIT-Z	HIS-N	Бур	Пустотелый бур	Щетка HIT-RB	Поршень HIT-SZ
manaman [] u		DISTRIBUTION				
M8	М8	-	10	-	10	-
M10	M10	-	12	12	12	12
M12	M12	M8	14	14	14	14
M16	M16	M10	18	18	18	18
M20	M20	M12	22	22	22	22
M24	-	M16	28	28	28	28
M27	-	-	30	-	30	30
-	-	M20	32	32	32	32
M30	-	-	35	35	35	35

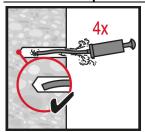
Инструкции по установке для шпилек HIT-V и втулок с внутренней резьбой HIS-N

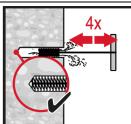

*Подробную информацию по установке смотрите в инструкции, поставляемой с продуктом.

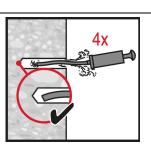

Правила техники безопасности.

Перед использованием ознакомьтесь с Паспортом безопасности материала для выполнения требований к безопасной и правильной установке! Используйте очки и перчатки подходящего размера при работе с Hilti HIT-HY 200 A (R).

Сверление отверстия

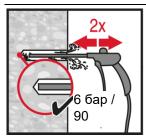

Ударное сверление

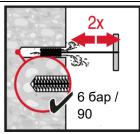


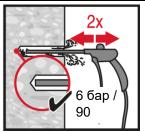

Ударное сверление пустотелым буром

Очистка не требуется

Очистка отверстия

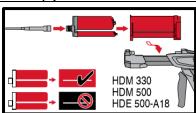


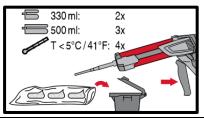




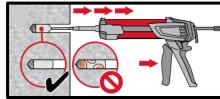
Ручная очистка

для отверстий диаметром $d_0 \le 20$ мм и глубиной отверстия $h_0 \le 10 \cdot d$.

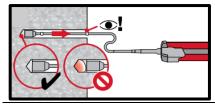


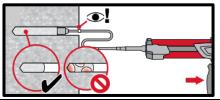


Очистка сжатым воздухом для отверстий диаметром d_0 и глубиной отверстия $h_0 \le 20 \cdot d$.


Инъецирование клеевого состава

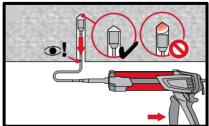
Подготовка клеевой системы.

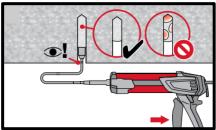




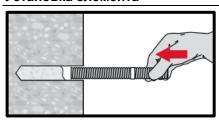
Метод **инъецирования** для отверстий глубиной

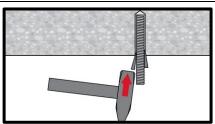
 $h_{ef} \le 250 \text{ MM}$



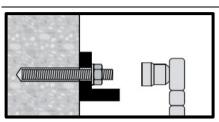


Метод **инъецирования** для отверстий глубиной


 $h_{ef} > 250 \text{ MM}$



Метод **инъецирования** для установки анкера в потолок и/или установки с глубиной > 250 мм.

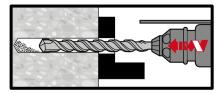

Установка элемента

Установка элемента с соблюдением времени твердения t_{work}

Установка элемента в потолок с соблюдением времени твердения t_{work}

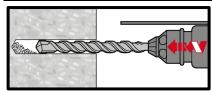
Нагружение анкера по истечении требуемого времени набора прочности t_{cure}

Инструкция по установке шпилек HIT-Z


*Подробную информацию по установке смотрите в инструкции, поставляемой с продуктом.

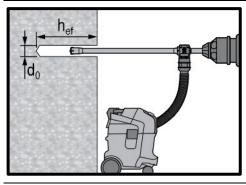
Правила техники безопасности.

Перед использованием ознакомьтесь с Паспортом безопасности материала для выполнения требований к безопасной и правильной установке! Используйте защитные очки и перчатки подходящего размерапри работе с Hilti HIT-HY 200 A (R)

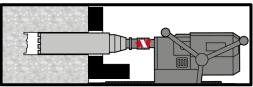

Устройство отверстия

Ударное сверление: Сквозной монтаж

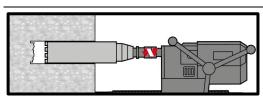
Очистка не требуется



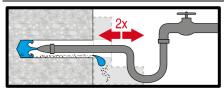
Ударное сверление:


Предварительный монтаж

Очистка не требуется

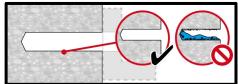

Ударное сверление с использованием пустотелого бура: Сквозной / предварительный монтаж

Очистка не требуется

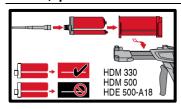

Алмазное сверление:

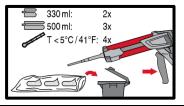
Сквозной монтаж

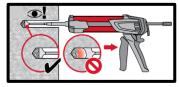
Алмазное сверление: Предварительный монтаж

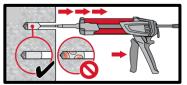

Очистка отверстия

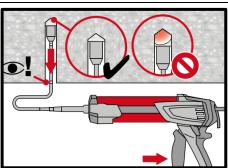
Промывка требуется для отверстий, полученных мокрым алмазным сверлением.





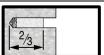

Откачивание требуется для отверстий, полученных мокрым алмазным сверлением.


Инъецирование состава



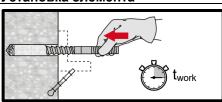
Подготовка клеевой системы.

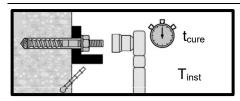
Инъецирование клеевого раствора с задней части отверстия без образования воздушных пустот.



Установка в потолок только с использованием удлинителей и поршня.

Сквозной монтаж:


Заполните отверстие на всю глубину.


Предварительный монтаж:

Заполните примерно 2/3 отверстия.

Установка элемента

Установка элемента на требуемую глубину до истечения времени набора прочности t_{work}

Нагружение анкера: По истечении требуемого времени набора прочности t_{cure}

Химический анкер HIT-HY 200

Гибридный клеевой анкер / Расчёт в соответствии с СТО 36554501-048-2016*

Химический анкер

Клеевой состав Hilti HIT-HY 200-А (поставляется в упаковках 330 и 500 мл)

- Преимущества
- Технология **SafeSet**: Упрощенный метод подготовки отверстия с использованием пустотелого бура Hilti для ударного сверления
- Данные ETA для категории сейсмостойкости C1
- Подходит для бетона с трещинами и без трещин класса В15-В60 Подходит для сухого и влажного бетона
- Высокая несущая способность
- Наименьшие краевые и межосевые расстояния
- Диапазон рабочих температур до 120°С при краткосрочном / 72°С при долгосрочном воздействии

SAMPLE SA

Арматура A500С (ф8 - ф32)

Материал основания

Бетон Бетон (без трещин) (с трещинами)

Сухой бетон

Влажный бетон

Нагрузки и воздействия

Статические/ Квазистатические

Прочая информация

Сейсмические, ETA-C1

Огнестойкость

Условия установки

Ударное сверление

Изменяемая глубина установки

Технология Hilti **SafeSet**

Небольшие краевые и межосевые расстояния

Техническое свидетельство Минстрой РФ

Европейская техническая оценка

Программа для расчёта PROFIS Engineering

Расчёт по СТО "Анкерные крепления к бетону. Правила проектирования"

Разрешительные документы / сертификаты

Описание	Орган / Лаборатория	№ / Дата выдачи
Техническое свидетельство	Минстрой, РФ	4805-16 / 08.02.2016
СТО 36554501-048-2016* "Анкерные крепления к бетону. Правила проектирования" ^{а)}	АО "НИЦ "Строительство"	Приложение А. Книга 2 / 2018
Европейская техническая оценка ^{b)}	Немецкий институт строительной техники (DIBt), Берлин	ETA-11/0493

- а) Сопротивление при статической и квазистатической нагрузке указано в соответствии с расчётом по СТО 36554501-048-2016*;
- b) Все данные в этом разделе приведены в соответствии с ETA-11/0493

Сопротивление при статической и квазистатической нагрузке (одиночный анкер)

Все данные в этом разделе приведены с учетом следующих факторов:

- Расчёт одиночного анкера произведён в соответствии с СТО 36554501-048-2016*
- Монтаж анкера выполнен в соответствии с инструкцией по установке
- Отсутствует влияние краевого и межосевого расстояния
- Наименьшее сопротивление анкера *по стали*
- Толщина основания соответствует указанной в таблице
- Одна типовая глубина установки, соответствующая указанной в таблице
- Один материал анкера, как указано в таблице
- Анкер установлен в бетоне класса B25, R_{b,n} = 18,5 МПа
- Используется арматура класса А500С по ГОСТ Р 52544
- Эксплуатация производится в температурном диапазоне I

(минимальная температура материала основания -43 °C, максимальная длительная/кратковременная температура материала основания: +24 °C / 40 °C)

Глубина установки и толщина основания

Арматура		ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	ф32
Глубина установки	[MM]	80	90	110	125	125	170	210	270	285	300
Толщина основания	[MM]	110	120	145	165	165	220	275	340	360	380

Нормативное сопротивление

Арматура		ф8	φ10	φ12	φ14	φ16	φ20	φ25	ф28	ф30	ф32		
Бетон без трещин													
Растяжение N _{Rk}	— [кН]	24,1	33,9	49,8	66,0	70,9	112,5	154,5	225,2	244,2	263,7		
Сдвиг V _{Rk}	— [KI I]	14,0	19,6	28,3	40,2	50,2	78,5	122,7	153,9	176,7	201,1		
Бетон с трещинами													
Растяжение N _{Rk}	— [кН]	-	14,1	29,0	38,5	44,0	74,8	110,0	160,3	173,8	187,7		
Сдвиг V _{Rk}	— [кпј	-	19,6	28,3	40,2	50,2	78,5	122,7	153,9	176,7	201,1		

Расчетное сопротивление

and the state of t												
Арматура		ф8	φ10	φ12	φ14	φ16	ф20	φ25	ф28	ф30	ф32	
Бетон без трещин												
Растяжение N _{Rd}	— [кН]	16,1	22,6	33,2	44,0	47,3	75,0	103,0	150,1	162,8	175,8	
Сдвиг V _{Rd}	— [кі і]	10,1	15,7	22,6	30,8	40,2	62,8	98,2	123,2	141,4	160,8	
Бетон с трещинами												
Растяжение N _{Rd}	[vLl]	-	9,4	19,4	25,7	29,3	49,8	73,3	106,9	115,9	125,2	
Сдвиг V _{Rd}	— [кН]	-	15,7	22,6	30,8	40,2	62,8	98,2	123,2	141,4	160,8	

Сопротивление при сейсмической нагрузке (одиночный анкер)

Все данные в этом разделе приведены с учетом следующих факторов:

- Монтаж анкера выполнен в соответствии с инструкцией по установке
- Отсутствует влияние краевого и межосевого расстояния
- Наименьшее сопротивление анкера *по стали*
- Толщина основания соответствует указанной в таблице
- Анкер установлен в бетоне класса B25, R_{b,n} = 18,5 МПа
- Эксплуатация производится в температурном диапазоне I (минимальная температура материала основания -43 °C, максимальная длительная/кратковременная температура материала основания: +24 °C / 40 °C);

Глубина установки и толщина основания для категории сейсмостойкости С1

Арматура		ф8	φ10	φ12	φ14	φ16	ф20	ф25	ф26	ф28	ф30	ф32
Глубина установки	[MM]	-	90	110	125	145	170	210	230	270	285	300
Толщина основания	[MM]	-	120	145	165	185	220	275	295	340	360	380

Нормативное сопротивление для категории сейсмостойкости С1

Арматура	ф8	φ10	φ12	φ14	φ16	ф20	φ25	ф26	ф28	ф30	ф32
Растяжение N _{Rk, seis}	-	12,4	25,3	33,5	38,3	65,2	93,1	113,8	135,8	135,8	159,0
Сдвиг V _{Rk, seis} [кН]	-	15,0	22,0	29,0	39,0	60,0	95,0	102,0	118,0	136,0	155,0

Расчетное сопротивление для категории сейсмостойкости С1

Арматура	ф8	φ10	φ12	φ14	φ16	ф20	φ25	ф26	ф28	ф30	ф32
Растяжение N _{Rd, seis} [кН]	-	8,3	16,9	22,4	25,6	43,4	62,1	75,8	90,5	90,5	106,0
Сдвиг V _{Rd, seis}	-	10,0	14,7	19,3	26,0	40,0	63,3	68,0	78,7	90,7	103,3

Материалы

Механические свойства

MOXAIII IOOMIO OBOIIOI												
Арматура		ф8	φ10	φ12	φ14	φ16	φ20	φ25	φ26	φ28	ф30	φ32
Предел прочности на растяжение fuk	[H/mm²]	600	600	600	600	600	600	600	600	600	600	600
Предел текучести f _{yk}	[H/мм²]	500	500	500	500	500	500	500	550	500	550	500
Площадь поперечного сечения А _s	[MM ²]	50,3	78,5	113,1	153,9	201,1	314,2	490,9	530,9	615,8	706,9	804,2
Момент сопротивления W	[MM ³]	50,3	98,2	169,6	269,4	402,1	785,4	1534	1726	2155	2651	3217

Характеристика арматуры

_ ларактеристика арматуры									
Элемент	Материал								
Арматурный стержень	Класс А500С по ГОСТ Р 52544, ГОСТ 34028; Класс А400 по ГОСТ 5781-82, ГОСТ 34028								

Информация по установке

Температурный диапазон установки:

от -10°C до +40°C

Температурный диапазон эксплуатации

Клеевой анкер Hilti HIT-HY 200 может применяться в диапазонах температур, указанных ниже. Повышенная температура материала основания может привести к снижению расчетной прочности сцепления.

Температурный диапазон	Температура основания	Максимальная длительная температура основания	Максимальная кратковременная температура основания		
Температурный диапазон I	-43 °C до + 40 °C	+ 24 °C	+ 40 °C		
Температурный диапазон II	-43 °C до + 80 °C	+ 50 °C	+ 80 °C		
Температурный диапазон III	-43 °C до + 120 °C	+ 72 °C	+ 120 °C		

Максимальная кратковременная температура основания

Кратковременная температура материала основания – это максимальная температура основания, которая может наблюдаться в течении всего периода эксплуатации.

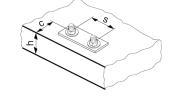
Максимальная длительная температура основания

Длительная температура материала основания принимается как среднесуточная температура в течение длительного периода времени.

Температура материала основания	Максимальное время твердения t _{work}	Минимальное время набора прочности t _{cure}
- 10°C < T _{BM} ≤ - 5°C	1,5 ч	7 ч
- 5°C < T _{BM} ≤ 0°C	50 мин	4 ч
0°C < T _{BM} ≤ 5°C	25 мин	2 your
5°C < T _{BM} ≤ 10°C	15 мин	75 мин
10°C < T _{BM} ≤ 20°C	7 мин	45 мин
20°C < T _{BM} ≤ 30°C	4 мин	30 мин
30°C < T _{BM} ≤ 40°C	3 мин	30 мин

Данные по времени полного твердения указаны только для сухого материала основания. Во влажном материале основания время полного твердения должно быть увеличено в 2 раза.

Оборудование для установки


Арматура	ф8	φ10	φ12	φ14	φ16	ф20	φ25	ф26	ф28	ф30	ф32
Перфоратор		TE 2 (-	4) – TE	16 (-A)		TE 40 – TE 80					
Другие инструменты		КОМІ	трессор		_	оздухол цеток, д		асос дл Э	ія прод	увки	

Установочные параметры

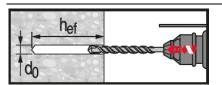
Арматура			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø26	Ø28	Ø30	Ø32
Номинальный диаметр бура	d ₀	[мм]	10 / 12 ^{a)}	12 / 14 ^{a)}	14 / 16 ^{a)}	18	20	25	32	32	35	37	40
Диапазон	h _{ef,min}	[мм]	60	60	70	75	80	90	100	104	112	120	128
эффективной глубины анкеровки и глубины отверстия ^{b)}	h _{ef,max}	[мм]	160	200	240	280	320	400	500	520	560	600	640
Минимальная толщина основания	h_{min}	[MM]		։ + 30 м ։ 100 мі					h _{ef} +	2 d ₀			
Минимальное межосевое расстояние	Smin	[мм]	40	50	60	70	80	100	125	130	140	150	160
Минимальное краевое расстояние	Cmin	[мм]	40	45	45	50	50	65	70	75	75	80	80
Критическое межосевое расстояние при раскалывании основания	S cr,sp	[мм]	2 C _{cr,sp}										
Критическое				1,0 · h	ef	Į	для h / h	l _{ef} ≥ 2,0	h/h _{ef}				
краевое расстояние при раскалывании	C _{cr,sp}	[MM]	4,6 h _{ef} - 1,8 h			для 1,3 < h / h _{ef} < 2,0 _{1,3}							
основания ^{с)}				2,26 h	l _{ef}	Į	для h / h	l _{ef} ≤ 1,3			1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}
Критическое межосевое расстояние при выкалывании бетона основания	S _{cr,N}	[мм]	1,0 m _{ef} 2,20 m _{ef}										
Критическое краевое расстояние при выкалывании бетона основания ^{d)}	C _{CF,N}	[мм]						1,5 h _{ef}					

- Могут быть использованы оба из указанных значений $h_{\text{ef,min}} \leq h_{\text{ef}} \leq h_{\text{ef,max}}$ (h_{ef} : эффективная глубина анкеровки) h: толщина основания ($h \geq h_{\text{min}}$) a) b) c) d)
- Критическое краевое расстояние при выкалывании бетона основания зависит от глубины установки $h_{\rm ef}$ и расчетной прочности сцепления. Упрощенная формула, приведенная в этой таблице, учитывает требования безопасности.

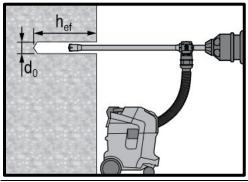
Параметры оборудования

Арматура, d [мм]	Бур	Пустотелый бур	Щетка HIT-RB	
	d ₀ [Размер [мм]		
VZ1/21/21/21/21				
ф8	12 / 10 a)	12	12 / 10 a)	
φ10	14 / 12 a)	14 / 12 ^{a)}	14 / 12 a)	
φ12	16 / 14 ^{a)}	16 / 14 ^{a)}	16 / 14 ^{a)}	
φ14	18	18	18	
φ16	20	20	20	
φ20	25	25	25	
φ25	32	32	32	
φ26	32	32	32	
φ28	35	35	35	
ф30	37	-	37	
ф32	40	-	40	

а) Могут быть использованы оба из указанных значений

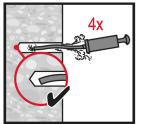

Инструкция по установке

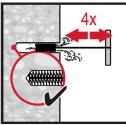
*Подробную информацию по установке смотрите в инструкции, поставляемой с продуктом

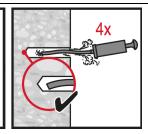


Правила техники безопасности.

Перед использованием ознакомьтесь с Паспортом безопасности материала для выполнения требований к безопасной и правильной установке! Используйте защитные очки и перчатки подходящего размера при работе с Hilti HIT HY 200.

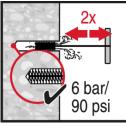



Ударное сверление



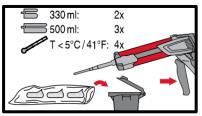
Ударное сверление пустотелым буром

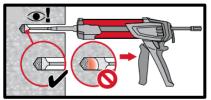
Не требуется дополнительной очистки



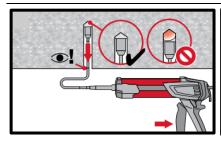
Ручная очистка

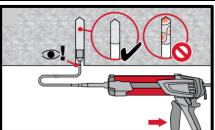
для отверстий диаметром $d_0 \le 20$ мм и глубиной $h_0 \le 10$ d.

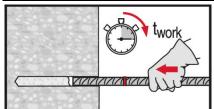


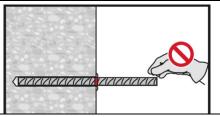

Очистка сжатым воздухом

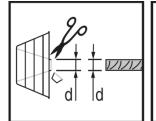
для всех отверстий диаметром d_0 и глубиной отверстия $h_0 \le 20 \cdot d$.

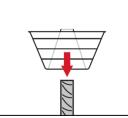


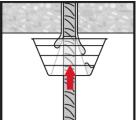

Подготовка химического анкера.

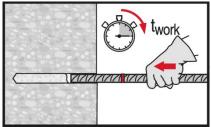



Метод **инъецирования** для установки с глубиной $h_{\text{ef}} \le 250$ мм.




Метод **инъецирования** для установки анкера в потолок и/или установки с глубиной h_{ef} > 250 мм.




Установка элемента с соблюдением времени набора прочности t_{work}



Установка элемента с соблюдением времени набора прочности t_{work}

Установка элемента с соблюдением времени набора прочности t_{work}

Химический анкер HIT-HY 200

Проектирование арматурных выпусков в соответствии с СТО 36554501-023-2010*

Химический анкер

Hilti HIT-HY 200-A

упаковках 330, 500 мл)

- Преимущества
- Клеевой состав: Технология SafeSet: Упрощенный метод подготовки отверстия с использованием пустотелого бура
- (поставляется в Подходит для бетона класса В15-В60
 - Подходит для сухого и влажного бетона
 - Для арматуры диаметром до 32 мм
 - Не вызывает коррозию арматурных стержней
 - Высокая несущая способность при повышенных температурах
 - Подходит для глубины установки до 1000 мм
 - Подходит для применения при температуре до -10 °C

Арматура $(\phi 8 - \phi 32)$

Материал основания

(без трещин)

Бетон (с трещинами)

Сухой бетон

Влажный бетон

Статическая/ квазистатическая нагрузка

Категория сейсмостойкости ETA-C1

Огнестойкость

Условия установки

Ударное Технология Hilti сверление SafeSet

Техническое свидетельство Минстрой РФ

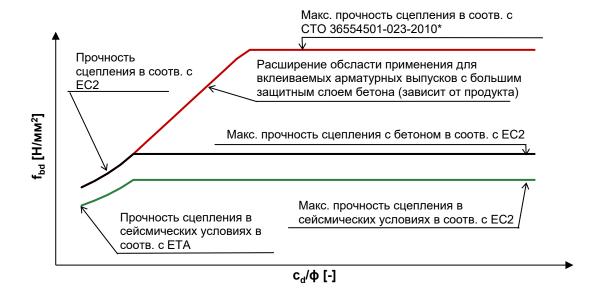
Прочая информация

Европейская техническая оценка

Соответствие CE

Программа для расчета PROFIS Rebar

Расчёт по CTO "HILTI REBAR"


Разрешительные документы / сертификаты

Описание	Орган / Лаборатория	№ / Дата выдачи
Техническое свидетельство	Минстрой, РФ	4805-16 / 08.02.2016
СТО 36554501-023-2010* "Устройство арматурных выпусков в бетонное основание по технологии «HILTI Rebar» "	АО "НИЦ "Строительство"	2016 г.
Европейская техническая оценка ^{а)}	DIBt, Берлин	ETA-11/0492 (HY200 A)
Протокол испытаний на огнестойкость	CSTB	Z-21.8-1948 (HY200 A)

Все данные в этом разделе приведены в соответствии с ЕТА-11/0492.

Сопротивление при статической и квазистатической нагрузке (одиночный анкер)

Сцепление для вклеиваемых арматурных выпусков с помощью химических клеевых анкеров Hilti

Статический расчет в соответствии с СТО 36554501-023-2010* (стандартный защитный слой бетона c_d ≤ 3ø)

Расчётное сцепление [H/мм²] для хороших условий сцепления

Все допустимые ударные способы сверления											
Апистипо	Класс бетона										
Арматура	B15	B20	B25	B30	B40	B45	B50	B55	B60		
φ8 - φ32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3		

Для стандартных условий сцепления значения сцепления умножить на 0,7.

Статический расчет в соответствии с СТО 36554501-023-2010* (большой защитный слой бетона c_d > 3ø)

Расчётное сцепление [H/мм²] для хороших условий сцепления

Бетон без трещи	Бетон без трещин, все допустимые ударные способы сверления											
Температурный	Арматура		Класс бетона									
диапазон		B25	B30	B40	B45	B50	B55	B60				
I: 40°C/24°C		8	8,2	8,3	8,4	8,6	8,7	8,8				
II: 58°C/35°C	φ8 - φ32	6,7	6,8	6,9	7,0	7,1	7,2	7,3				
III: 70°C/43°C		5,7	5,8	5,9	6,0	6,1	6,1	6,2				
Бетон с трещина	ми, все допус	тимые уда	рные спо	собы свер	ления							
I: 40°C/24°C		4,7	4,8	4,8	4,9	5,0	5,1	5,1				
II: 58°C/35°C	φ12 - φ32	3,7	3,7	3,8	3,9	3,9	4,0	4,0				
III: 70°C/43°C		3,3	3,4	3,5	3,5	3,6	3,6	3,7				

Дополнительные технические данные Hilti:

Понижающий коэффициент для раскалывания при большом защитном слое (cd > 3ø) бетона составляет:

 δ = 0,306 (дополнительные данные Hilti)

Для стандартных условий сцепления значения умножить на 0,7. *Уменьшающий коэффициент для диаметра 10 мм составляет 0,72

Минимальная длина анкеровки и минимальная длина нахлеста

Минимальная длина анкеровки $I_{b,min}$ и минимальная длина нахлеста $I_{0,min}$ в соответствии с СТО 36554501-023-2010* должны быть умножены на соответствующий фактор α_{lb} из таблицы.

Фактор α_{іь} для мин. длины анкеровки и мин. длины нахлеста

Все допусти	Все допустимые ударные способы сверления											
Арматира	хтура Класс бетона											
Арматура	B15	B20	B25	B30	B40	B45	B50	B55	B60			
φ8 - φ32					1,0							

Длина анкеровки для арматуры с пределом текучести f_{уk}=500 H/мм² для хороших условий сцепления

Все допустимые ударные способы сверления											
Арматура	Класс бетона	Растягив ающая нагрузка [кН]	l _{b,min} 1)	l _{0,min} ¹⁾	l _{bd,y} (α2=1) ²⁾	l _{bd,y} (α2=0.7) ³⁾	l _{bd,y,} HRM (α2<0.7) ⁴⁾	lmax -10°C ≤ Ct ⁵) ≤ 0°C	Imax Ct ⁵⁾ > 0°C		
10	B25		[MM] 113	[MM]	[мм] 378	[мм] 265	[мм] 109	[MM] 700	[MM] 1000		
φ8	B60	21,9					99				
φ8		21,9	100	200	202	142		700	1000		
φ10	B25	34,1	142	200	473	331	136	700	1000		
φ10	B60	34,1	100	200	253	177	124	700	1000		
φ12	B25	49,2	170	200	567	397	163	700	1000		
φ12	B60	49,2	120	200	303	212	148	700	1000		
φ14	B25	66,9	198	210	662	463	190	700	1000		
φ14	B60	66,9	140	210	354	248	173	700	1000		
φ16	B25	87,4	227	240	756	529	217	700	1000		
φ16	B60	87,4	160	240	404	283	198	700	1000		
φ18	B25	110,6	255	270	851	595	245	700	1000		
φ18	B60	110,6	180	270	455	319	222	700	1000		
φ20	B25	136,6	284	300	945	662	272	700	1000		
φ20	B60	136,6	200	300	506	354	247	700	1000		
ф22	B25	165,3	312	330	1040	728	299	700	1000		
φ22	B60	165,3	220	330	556	389	272	700	1000		
φ24	B25	196,7	340	360	1134	794	326	700	1000		
φ24	B60	196,7	240	360	607	425	296	700	1000		
φ25	B25	213,4	354	375	1181	827	340	700	1000		
φ25	B60	213,4	250	375	632	442	309	700	1000		
φ26	B25	230,8	369	390	1229	860	353	700	1000		
φ26	B60	230,8	260	390	657	460	321	700	1000		
φ28	B25	267,7	397	420	1323	926	380	700	1000		
φ28	B60	267,7	280	420	708	495	346	700	1000		
φ30	B25	307,3	425	450	1418	992	408	700	1000		
φ30	B60	307,3	300	450	758	531	371	700	1000		
ф32	B25	349,7	454	480	1512	1059	435	700	1000		
ф32	B60	349,7	320	480	809	566	395	700	1000		

¹⁾ В соответствии с СТО 36554501-023-2010* $I_{b,min}$ (8.6) и $I_{0,min}$ (8.11) рассчитаны для хороших условий сцепления и арматуры с пределом текучести f_{yk} = 500 H/мм², γ_M =1,15 и α_6 = 1,0

- Слубина анкеровки при растяжении арматуры и при с_d/φ = 1 (предел текучести f_{yk} = 500 H/мм²)
- 3) Глубина анкеровки при растяжении арматуры и при с₀/ф = 3 (предел текучести fуk = 500 H/мм²)

5) с_t= температура основания

Глубина анкеровки в соответствии с методом Hit Rebar при растяжении арматуры и при с_d/ф > 8 (Температурный диапазон I, Предел текучести f_{vk} = 500 H/мм²)

Сейсмические нагрузки (одиночный анкер)

Сейсмический расчет (DTA 3/16-874)

Расчетная прочность сцепления с бетоном [H/мм²] для хороших условий сцепления

Все допустимые	Все допустимые ударные способы сверления										
Температурный	Арматира		Класс бетона								
диапазон	Арматура	B25	B30	B40	B45	B50	B55	B60			
-43°C - +80°C	φ8 - φ32	2,3	2,7	2,7	2,7	2,7	2,7	2,7			

Для стандартных условий сцепления значения сцепления умножить на 0,7.

Длина анкеровки для арматуры с пределом текучести fyk=500 H/мм² для хороших условий сцепления

Все допустим	ые ударные спос	обы сверления				
Арматура	Класс бетона	Растягивающая нагрузка	I _{b,min} 1)	I _{0,min} 1)	I _{bd,y (α2=1)} ²⁾	I _{bd,y (α2=0.7)} ³⁾
		[ĸH]	[MM]	[мм]	[мм]	[MM]
ф8	B25	21,9	113	200	378	265
ф8	B60	21,9	100	200	322	225
φ10	B25	34,1	142	200	473	331
φ10	B60	34,1	121	200	403	282
φ12	B25	49,2	170	200	567	397
φ12	B60	49,2	145	200	483	338
φ14	B25	66,9	198	210	662	463
φ14	B60	66,9	169	210	564	395
φ16	B25	87,4	227	240	756	529
φ16	B60	87,4	193	240	644	451
ф18	B25	110,6	255	270	851	595
ф18	B60	110,6	217	270	725	507
ф20	B25	136,6	284	300	945	662
ф20	B60	136,6	242	300	805	564
ф22	B25	165,3	312	330	1040	728
ф22	B60	165,3	266	330	886	620
ф24	B25	196,7	340	360	1134	794
φ24	B60	196,7	290	360	966	676
ф25	B25	213,4	354	375	1181	827
ф25	B60	213,4	302	375	1006	705
ф26	B25	230,8	369	390	1229	860
ф26	B60	230,8	314	390	1047	733
ф28	B25	267,7	397	420	1323	926
ф28	B60	267,7	338	420	1127	789
ф30	B25	307,3	425	450	1418	992
ф30	B60	307,3	362	450	1208	845
ф32	B25	349,7	454	480	1512	1059
φ32	B60	349,7	386	480	1288	902

Огнестойкость

а) Анкеровка

Максимальное усилие на арматурный выпуск, установленный с помощью HIT HY 200, как функция от глубины установки для пределов огнестойкости от R30 до R180 (предел текучести f_{yk} = 500 H/мм² и классе бетона B25) в соответствии с CTO 023

F _{s,T,max}		ℓ_{inst}		усилие вырь		-	
Арматура	[кН]			висимости от			
	[]	[MM]	R30	R60	R90	R120	R180
		80	3,0	0,7	0,2	0,0	0,0
		120	7,0	2,2	1,3	0,7	0,2
		170		10,2	9,2	4,0	1,7
ф8	16,19	210				11,0	7,5
		230	16,2	16,2	16,2	14,5	10,9
		250		10,2	10,2	16,2	14,5
		300				10,2	16,2
		100	6,1	2,0	1,0	0,4	0,0
		150	19,3	9,3	7,1	2,2	1,0
		190		18,0	15,9	9,3	4,9
φ10	25,29	230			24,7	18,1	13,7
		260	25,3	25.2	25,3	24,7	20,3
		280		25,3		25,3	24,7
		320				25,5	25,3
		120	15,3	6,0	1,9	1,1	0,3
		180	31,0	19,0	17,8	8,5	7,0
		220		29,6	27,0	19,1	13,8
φ12	36,42	260				29,7	24,4
		280	36,4	26.4	26.4	35,0	29,6
		300		36,4	36,4	26.4	34,9
		340				36,4	36,4
		140	24,0	9,9	6,9	2,6	1,0
		210	45,0	31,4	28,5	25,7	13,0
		240		40,6	37,7	32,8	22,3
φ14	49,58	280				40,7	34,6
		300	49,6	49,6	10.6	44,7	40,7
		330		49,0	49,6	40.6	48,1
		360				49,6	49,6
		160	34,5	18,4	14,9	4,4	2,3
		240	62,6	46,4	43,0	37,7	25,5
		260		53,5	50,0	44,7	32,5
φ16	64,75	300			57,0	51,7	49,6
·		330	64,8	0.4.0		61,3	57,2
		360		64,8	64,8	04.0	62,7
		400				64,8	64,8

Максимальное усилие на арматурный выпуск, установленный с помощью HIT HY 200, как функция от глубины установки для пределов огнестойкости от R30 до R180 (предел текучести f_{yk} = 500 H/мм² и классе бетона B25) в соответствии с CTO 023

	F _{s,T,max}	0	Расчетное	усилие выры	ыва арматур	ного стерж	ня [кН] в
Арматура	κΗ]	ℓ inst		висимости от	предела ог	нестойкост	
	[KII]	[MM]	R30	R60	R90	R120	R180
		200	60,7	40,0	36,3	29,3	14,3
		250	78,3	62,5	58,3	51,3	36,3
		310		88,9	84,6	77,6	62,6
φ20	101,18	350				94,2	80,2
		370	101,2	101,2	101,2		83,5
		390		101,2	101,2	101,2	97,8
		430					101,2
		250	97,9	78,1	72,6	64,7	45,3
		280	126,5	94,6	89,4	81,2	61,8
		370		144,0	127,9	119,7	111,2
φ25	158,09	410			150,0	141,8	123,2
		430	158,1	158,1		150,0	144,2
		450		150,1	158,1	158,1	155,2
		500				130,1	158,1
		250	97,9	78,1	72,6	64,7	45,3
		280	126,5	94,6	89,4	81,2	61,8
		370		144,0	127,9	119,7	111,2
φ32	158,09	410			150,0	141,8	123,2
		430	158,1	158,1		150,0	144,2
		450		130,1	158,1	158,1	155,2
		500				130,1	158,1

Предел текучести арматуры f_{yk} = 500 H/мм²
Наименьшее сопротивление анкера - по стали

b) Нахлест арматурных стержней

Макс. сцепление, f_{bd,FIRE}, зависит от толщины защитного слоя бетона.

Необходимо проверить, что усилие в стержне при пожаре, $F_{s,T}$, может быть воспринято соединением внахлест, соответствующей длины, I_{inst} . Примечание: Расчет по первому предельному состоянию без учета огнестойкости обязателен.

 $F_{s,\,T} \leq (I_{inst} - c_f) \cdot \phi \cdot \pi \cdot f_{bd,FIRE}$ где: $(I_{inst} - c_f) \geq I_s$;

I_s = длина нахлеста;

ф = диаметр арматуры;

l_{inst} – c_f = выбранная длина нахлеста; должна быть не менее l_s,

и не более 80 ф;

f_{bd,FIRE} = сцепление с бетоном при воздействии огня

Расчетное сцепление с бетоном, τ_c , при соединении внахлест с помощью HIT-HY 200 в зависимости от толщины защитного слоя бетона (c) и предела огнестойкости конструкции (R).

Толщина защитного слоя с	Ma	акс. расчетное	сцепление с бе	етоном, τε [Н/м	M²]
[MM]	R30	R60	R90	R120	R180
30	0,6	0,3			
35	0,7	0,3	_		
40	0,9	0,4	0,2	-	
45	1,0	0,4	0,2		
50	1,2	0,5	0,3		-
55	1,5	0,6	0,3	0,2	
60	1,8	0,8	0,4	0,3	
65		0,9	0,5	0,3	
70		1,0	0,5	0,3	
75		1,2	0,6	0,4	0,2
80		1,5	0,7	0,5	0,3
85		1,7	0,8	0,5	0,3
90		2,0	1,0	0,6	0,3
95			1,1	0,7	0,4
100	2,2		1,3	0,8	0,4
105	۷,۷		1,5	0,9	0,5
110			1,7	1,1	0,5
115		2,2	2,0	1,2	0,6
120		۷,۷		1,4	0,6
125				1,6	0,7
130			2,2	1,9	0,8
135				2,1	0,9
200				۷, ۱	2,3

Материалы

Характеристики арматуры

Элемент	Материал
Арматурный стержень	Класс А500С по ГОСТ Р 52544, ГОСТ 34028; Класс А400 по ГОСТ 5781-82, ГОСТ 34028

Применение

Специальные испытания на действие длительной нагрузки были выполнены в соответствии с ETAG 001, часть 5 и TR 023 **при + 50 °C в течении 90 дне**й.

Данные испытания показали хорошую работу арматурных соединений, выполненных с помощью HIT-HY 200: малые перемещения при длительной нагрузке.

Стойкость к агрессивным средам

Химическая среда	Стойкость
Воздух	+
Уксусная кислота 10%	+
Ацетон	0
Аммоний 5%	+
Бензиловый спирт	-
Хлорная кислота 10%	0
Хлорированная известь 10%	+
Лимонная кислота 10%	+
Пластификатор для бетона	+
Соль для удаления льда	_
(хлорид кальция)	T
Деминерализованная вода	+
Дизель	+
Суспензия буровой пыли рН 13,2	+
Этанол 96%	-
Этилацетат	_
Муравьиная кислота 10%	+
Масло для опалубки	+

Химическая среда	Стойкость
Бензин	+
Гликоль	0
Пероксид водорода 10%	0
Молочная кислота 10%	+
Машинное масло	+
Метилэтилкетон	0
Азотная кислота 10%	0
Фосфорная кислота 10%	+
Гидроксид калия рН 13,2	+
Морская вода	+
Сточные воды	+
Карбонат натрия 10%	+
Гипохлорит натрия 2%	+
Серная кислота 10%	+
Серная кислота 30%	+
Толуол	0
Ксилен	0

- + Обладает стойкостью
- Обладает частичной стойкостью
- Не обладает стойкостью

Электропроводимость

HIT-HY 200 в затвердевшем состоянии **не проводит электрический ток**. Его удельное электрическое сопротивление 15,5⋅10⁹ Ом⋅см.

(DIN IEC 93 – 12.93). Хорошо подходит для обеспечения электроизоляционного соединения (к примеру, на железных дорогах, в метрополитене).

Температурный диапазон установки:

от -10°C до +40°C

Температурный диапазон эксплуатации

Клеевой анкер Hilti HIT-HY 200 может применяться в диапазонах температур, указанных ниже. Повышенная температура материала основания может привести к снижению расчетной прочности сцепления.

Температурный диапазон	Температура основания	Максимальная длительная температура основания	Максимальная кратковременная температура основания
Температурный диапазон I	-43 °C до +80 °C	+50 °C	+80 °C

Максимальная кратковременная температура основания

Кратковременная температура материала основания – это максимальная температура основания, которая может наблюдаться в течении всего периода эксплуатации.

Максимальная длительная температура основания

Длительная температура материала основания принимается как среднесуточная температура в течение длительного периода времени.

Температура базового материала Т _{вм}	Максимальное время твердения t _{work}	Минимальное время набора прочности tcure
- 10°C < T _{BM} ≤ - 5°C	1,5 ч	7 ч
- 5°C < T _{BM} ≤ 0°C	50 мин	4 ч
0°C < T _{BM} ≤ 5°C	25 мин	2 ч
5°C < T _{BM} ≤ 10°C	15 мин	75 мин
10°C < T _{BM} ≤ 20°C	7 мин	45 мин
20°C < T _{BM} ≤ 30°C	4 мин	30 мин
30°C < T _{BM} ≤ 40°C	3 мин	30 мин

Данные по времени набора прочности указаны только для сухого материала основания. Во влажном материале основания время набора прочности должно быть увеличено в 2 раза.

Информация по установке

Оборудование для установки

Арматура	ф8 - ф16	φ18 - φ32	
Перфоратор	TE 2 (-A)- TE 40(-A)	TE40 – TE80	
	Насос для продувки (h _{ef} ≤ 10·d)	-	
Другие инструменты	Компрессор со сжатым воздухом ^{а)}		
	Набор щеток ^{b)} , дозатор, поршень		

- a) Компрессор со сжатым воздухом и удлинительным шлангом для отверстий с глубиной более 250 мм (для d ф 8 − ф 12) или 20·ф (для d ф > 12 мм);
- b) Автоматическая очистка круглой щёткой для отверстий с глубиной более 250 мм (для d ϕ 8 ϕ 12) или 20 ϕ (для d ϕ > 12 мм)

Минимальный защитный слой стіп для вклеенного стержня

Способ	Диаметр	Минима	льный защитный сло	й С _{тіп} [мм]
сверления	арматуры [мм]	С использованием станка	Без использования станка	
Ударное	φ < 25	30 + 0,06 · I _v ≥ 2 · φ	30 + 0,02 · I _V ≥ 2 · φ	ริการ์การ์การ์การ์การ์การ์การ์การ์การ์การ์
сверление	φ≥ 25	40 + 0,06 · I _V ≥ 2 · φ	40 + 0,02 · I _V ≥ 2 · φ	Commun.
Бурение	φ < 25	50 + 0,08 · I _v	50 + 0,02 · I _v	
пневматическим перфоратором	φ≥ 25	60 + 0,08 · I _v ≥ 2 · φ	60 + 0,02 · I _v ≥ 2 · φ	1

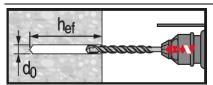
Дозатор для соответствующей глубины анкеровки $\ell_{
m v,max}$

-	Дозатор		
	HDM 330, HDM 500, HDE 500	HDE 500	
Арматура	Температура основания. ≥ -10°C	Температура основания ≥ 0°C	
	$\ell_{ m v,max}$ [ММ]	ℓ _{v,max} [мм]	
	₹V,max [iviivi]	~v,max []	

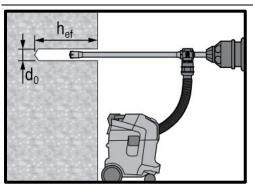
Параметры оборудования

Арматура [мм]	Бур	Пустотелый бур ^{b)}	Бур для компрессора	Щетка HIT-RB	Сопло HIT-RB
	d₀ [мм]			размер [мм]	
[Z]Z]Z]Z]Z]Z	TU COME		3000		
ф8	12 / 10 ^{a)}	12	-	12 / 10 ^{a)}	12 / 10 ^{a)}
φ10	14 / 12 a)	14 / 12 ^{a)}	-	14 / 12 ^{a)}	14 / 12 a)
φ12	16 / 14 ^{a)}	16 / 14 ^{a)}	-	16 / 14 ^{a)}	16 / 14 ^{a)}
	-	-	17	18	16
φ14	18	18	17	18	18
φ16	20	20	-	20	20
	-	-	20	22	20
φ18	22	22	22	22	22
ф20	25	25	-	25	25
	-	-	26	28	25
ф22	28	28	28	28	28
ф24	32	32	32	32	
φ25	32	32	32	32	
ф26	35	-	35	35	
ф28	35	-	35	35	32
ф30	-	-	35	35	
	37	-	-	37	
ф32	40	-	40	40	

а) Максимальная глубина установки I=250 мм.


Инструкция по установке

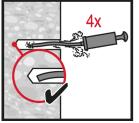
* Подробную информацию по установке смотрите в инструкции, поставляемой с продуктом.

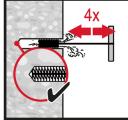


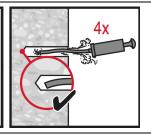
Правила техники безопасности.

Перед использованием ознакомьтесь с Паспортом безопасности материала для выполнения требований к безопасной и правильной установке! Используйте защитные очки и перчатки подходящего размера при работе с Hilti HIT-HY 200

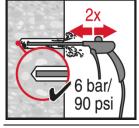
Ударное сверление

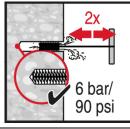


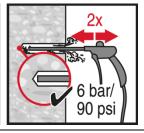

Ударное сверление пустотелым буром


Не требуется дополнительной очистки

b) Не требуется дополнительная очистка отверстия

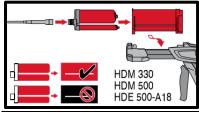


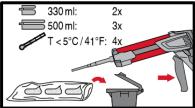


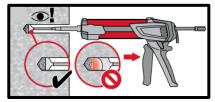


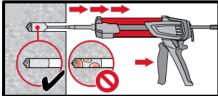
Ручная очистка

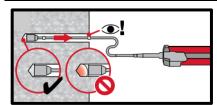
для отверстий диаметром $d_0 \le 20$ мм и глубиной $h_0 \le 10$ d.

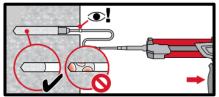


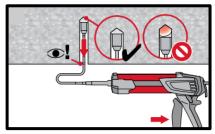


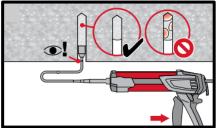

Очистка сжатым воздухом

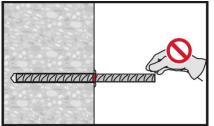

для всех отверстий диаметром d_0 и глубиной отверстия $h_0 \le 20 \cdot d$.

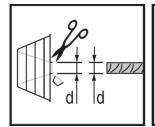


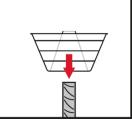

Подготовка химического анкера

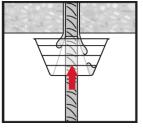


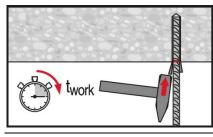

Метод **инъецирования** для установки с глубиной h_{ef} ≤ 250 мм.

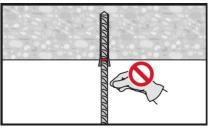

Метод **инъецирования** для установки с глубиной $h_{\text{ef}} > 250$ мм.

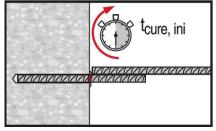

Метод **инъецирования** для установки анкера в потолок

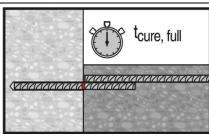





Установка элемента с соблюдением времени набора прочности t_{work}







Установка элемента с соблюдением времени твердения t_{work}

Нагружение элемента: После требуемого времени набора прочности t_{cure}